MAQ

1) If A and B are any two different square matrices of order n with A - B is non-singular

A3 = B3 and A(AB) = B(BA) , then

a) A2 + B2 = 0 b) A2 +B2 = I

c) A2 + B3 = I d) A3 + B3 = 0

4 Answers

4
UTTARA ·

a

4
UTTARA ·

a I got

But I'm doubtful if c is rite

Check out Is c correct?????

1
utd4ever ·

hey could you please tell me how you got the answer ...

62
Lokesh Verma ·

Since A-B is non singular,

(A-B)^3\neq 0, hence

\\(A-B)(A-B)^2=(A-B)(A^2-AB-BA+B^2)\neq 0 \\\Rightarrow A^3-A(AB)-A(BA)+A(BB)-B(AA)+B(AB)+B(BA)-B^3\neq 0 \\\Rightarrow -A(BA)+A(BB)-B(AA)+B(AB)\neq 0 \\\Rightarrow (AB)(-A+B)-BA(A-B)\neq 0 \\\Rightarrow (AB+BA)(A-B)\neq 0

\\(A-B)(A-B)^2=(A-B)(A^2-AB-BA+B^2)\neq 0 \\\Rightarrow A^3-A^2B-ABA+AB^2-BA^2+BAB+B^2A-B^3\neq 0 \\\Rightarrow -ABA+AB^2-BA^2+BAB\neq 0 \\\Rightarrow BA+AB\neq 0

Am i missing out something! :(

Your Answer

Close [X]