Max. and Min. in Circle

\hspace{-16}$Let $\mathbf{(x,y)}$ be Real variables Satisfying $\mathbf{x^2+y^2+8x-10y-40=0}$\\\\ If $\mathbf{a=Max\{(x+2)^2+(y-3)^2\}}$ and $\mathbf{b=Min\{(x+2)^2+(y-3)^2\}}$\\\\ Then find\\\\ (i)\;\; $\mathbf{a+b=}$\\\\ (ii)\;\; $\mathbf{a-b=}$\\\\ (iii)\;\; $\mathbf{a.b=}$\\\\

1 Answers

262
Aditya Bhutra ·

(x,y) represents any point on the given circle.

a = square of maximum distance of a point on the circle and (-2,3)
= Radius + distance between center and point(-2,3) = 9+2√2

b=square of minimum distance of a point on the circle and (-2,3)
= Radius - distance between center and point(-2,3) = 9 - 2√2

Your Answer

Close [X]