\hspace{-16}(1)::\;$Solve for $\mathbf{x\in\mathbb{R}$ in $\mathbf{\mid x^3-1\mid +\mid 2-x^3\mid = 1}}
-
UP 0 DOWN 0 0 2
2 Answers
Ashish Kothari
·2011-08-23 23:37:32
Replace x3 by t.
Therefore,
\left|t-1 \right|+\left|2-t \right|=1
For t\leq1 ,
t=1
For 1<t<2 , the equation is satisfied \forall \: t \in \left(1,2 \right).
For t\geq2 ,
t=2
Then, solution set is given by \left\{f(x):f(x)=x^{\frac{1}{3}}, f:\left[1,2 \right]\rightarrow \mathbb{R} \right\}
Lokesh Verma
·2011-08-24 05:46:36
@ashish: a better solution
|a|+|b|=|a+b|
this is true only if a and b are of the same sign.
Rest ur solution will follow.