but it is not a continuous variation............integral values only............
2 integers x,y are chosen(with replcement) out of set{0,1,2,.......10}.
FInd the probablity that mod(x-y)≤5..........
-
UP 0 DOWN 0 0 9
9 Answers
2 integers x,y are chosen(with replcement) out of set{0,1,2,.......10}.
FInd the probablity that mod(x-y)≤5..........
if x=0, y can take values 0-5 (6 values)
if x=1, y can take values 0-6 (7 values)
if x=2, y can take values 0-7 (8values)
if x=3, y can take values 0-8 (9 values)
if x=4, y can take values 0-9 (10 values)
if x=5, y can take values 0-10 (11 values)
if x=6, y can take values 1-10 (10 values)
if x=7, y can take values 2-10 (9 values)
if x=8, y can take values 3-10 (8 values)
if x=9, y can take values 4-10 (7 values)
if x=10, y can take values 5-10 (6 values)
fav values = 17.3+8.5 = 51+40 = 91
total cases = 112 = 121
If i have not made any mistake then the answer should be 91/121 :)
somehow this is not convincing me.. dont know why..
for an elegant proof you will have to do the summation thing.. ;)