if \ a+b+c =1 ,; a,b, c \rightarrow R^+ \\ prove \ that \ \\ \\ \sum_{cyclic}{} {\frac{a}{1+bc}}\geq \frac{9}{10}
-
UP 0 DOWN 0 1 1
1 Answers
Hari Shankar
·2010-01-13 08:43:24
I assume u r looking for a solution:
Using Cauchy Schwarz
\sum \frac{a}{1+bc} = \sum \frac{a^2}{a+abc} \ge \frac{(a+b+c)^2}{\sum a + 3abc} = \frac{1}{1+3abc}
From AM-GM a+b+c =1 \Rightarrow 3abc \le \frac{1}{9} \Rightarrow \frac{1}{1+3abc} \ge \frac{9}{10}