Prove that \left|\alpha +\sqrt {\alpha ^2 -\beta ^2} \right|+\left|\alpha -\sqrt {\alpha ^2 -\beta ^2} \right|=\left|\alpha +\beta \right|+\left|\alpha -\beta \right| where α,β are complex numbers
-
UP 0 DOWN 0 0 1
Prove that \left|\alpha +\sqrt {\alpha ^2 -\beta ^2} \right|+\left|\alpha -\sqrt {\alpha ^2 -\beta ^2} \right|=\left|\alpha +\beta \right|+\left|\alpha -\beta \right| where α,β are complex numbers