first one
a_n=3.2^{n-1}-1
\texttt{the characteristic polynomial here is } 1-2x \\ hence \\ a_n=coefficient (x^n,(1-2x)^{-1}\left(a_1x +x^2 +x^3+....x^n+.\infty \right) \\ hence \\ a_n =1+2+2^2+2^3+.......+2^{n-2}+a_1.2^{n-1} \\ \Rightarrow a_n=2^{n-1}-1+2^{n-1}.2=\boxed{3.2^{n-1}-1}
1)find the nth term of the sequencesuch that
2)Find the nth term of the sequence such that
3)Find the nth term of the sequence such that then Calculate
4)Find the n th term of the sequence such that
5)Find the n th term of the sequence such that
-
UP 0 DOWN 0 1 15
15 Answers
3rd one
a_n=\sum_{k=1}^{n}{a_k}-\sum_{k=1}^{n-1}{a_k} \\ a_n=3n(n+1)\\ \frac{1}{a_n}=\frac{1}{3}(\frac{1}{n}-\frac{1}{n+1})
1) or let b_n = a_n+1
So that the recurrence looks like b_{n+1} = 2b_n
ya akari u r correct :)
try oder ones also ....i added 5th one
btw i had an approch for 1st one ....but much lengthier than generating polynomials
a_{n+1} = \frac{a_n}{2} + \frac{n^2-2n-1}{n^2(n+1)^2} = \frac{a_n}{2} + \frac{2}{(n+1)^2} - \frac{1}{n^2}
\Rightarrow a_{n+1} - \frac{2}{(n+1)^2}= \frac{1}{2} \left(a_n - \frac{2}{n^2} \right)
So if you define a sequence {bn} as b_n = a_n - \frac{2}{n^2} then this sequence obeys the recurrence b_{n+1} = \frac{b_n}{2}
Q4. nan = (n-1)Sn
(n-1)an-1 = (n-2)Sn-1
Subtracting,
n(an - an-1) + an-1 = (n-1)an + Sn-1
=> an - (n-1)an-1 = (n-1)an-1/(n-2)
=> an = (n-1)2an-1/(n-2) = (n-1)2(n-2)(n-3)(n-4)....2.a2
also 2a2 = 1 + 1 + a2
=> a2 = 2
=> an = 2(n-1)(n-1)!
quite long i guess
5) Rewriting the recurrence as n^3 a_n = (n-1)^3 a_{n-1} + n(n-1)
Let b_n = n^3 a_n
Then we have the recurrence b_n -b_{n-1} = n(n-1)
This can be summed up telescopically to arrive at
b_n-b_1 = \sum_{k=2}^n k^2-k = \sum_{k=1}^n k^2-k = \frac{n(n^2-1)}{3}
b1=0 and hence a_n = \frac{(n^2-1)}{3n^2}
continuing from prophet sir's # 10 post
b_{n}=2b_{n+1}
b_{n-1}=2b_{n}
b_{n-2}=2b_{n-1}=4b_{n}=2^{2}b_{n}
\Rightarrow b_{n-k}=2^{k}b_{n}
\Rightarrow b_{n-(n-1)}=2^{(n-1)}b_{n}
\Rightarrow b_{1}=2^{(n-1)}b_{n}
\Rightarrow b_{n}= \frac{b_{1}}{2^{(n-1)} }
also\;\;\; b_{n}= a_{n}-\frac{2}{n^{2}}
b_{1}= a_{1}-\frac{2}{1}= -1
a_{n}-\frac{2}{n^{2}}= \frac{-1}{2^{n-1}}
a_{n}=\frac{2}{n^{2}}+\frac{-1}{2^{n-1}}= \frac{2^{n}-n^{2}}{2^{(n-1)}n^{2}}
ya qwerty thats correct :)
btw u can do this
\\\texttt{after \; u\; got\; this}\\ a_{n+1}-\frac{2}{(n+1)^{2}}={1\over 2}\left(a_{n}-\frac{2}{n^{2}}\right)\\ \Rightarrow \prod_{k=1}^{k=n-1}\left ( a_{k+1}-\frac{2}{(k+1)^{2}} \right )=\prod_{k=1}^{k=n-1}\left ( {1\over 2}\left(a_{k}-\frac{2}{k^{2}}\right) \right )\\\\\Rightarrow a_{n}-\frac{2}{n^2}=\frac{1}{2^{n-1}}\left ( a_{1}-\frac{2}{{1}^{2}} \right )
for 1st one oder way
a_{n+1}=2a_{n}+1\Longleftrightarrow a_{n+1}+1=2(a_{n}+1)
\therefore a_{n}+1=2^{n-1}(a_{1}+1)=3\cdot 2^{n-1},
threfore giving a_{n}=3\cdot 2^{n-1}-1\ (n\geq 1)