Reccurence

1)find the nth term of the sequencesuch that

2)Find the nth term of the sequence such that

3)Find the nth term of the sequence such that then Calculate

4)Find the n th term of the sequence such that

5)Find the n th term of the sequence such that

15 Answers

1
akari ·

first one
a_n=3.2^{n-1}-1
\texttt{the characteristic polynomial here is } 1-2x \\ hence \\ a_n=coefficient (x^n,(1-2x)^{-1}\left(a_1x +x^2 +x^3+....x^n+.\infty \right) \\ hence \\ a_n =1+2+2^2+2^3+.......+2^{n-2}+a_1.2^{n-1} \\ \Rightarrow a_n=2^{n-1}-1+2^{n-1}.2=\boxed{3.2^{n-1}-1}

1
akari ·

3rd one
a_n=\sum_{k=1}^{n}{a_k}-\sum_{k=1}^{n-1}{a_k} \\ a_n=3n(n+1)\\ \frac{1}{a_n}=\frac{1}{3}(\frac{1}{n}-\frac{1}{n+1})

341
Hari Shankar ·

1) or let b_n = a_n+1

So that the recurrence looks like b_{n+1} = 2b_n

1
Che ·

ya akari u r correct :)

try oder ones also ....i added 5th one

btw i had an approch for 1st one ....but much lengthier than generating polynomials

106
Asish Mahapatra ·

Q4. an = 2(n-1)(n-1)! ??

49
Subhomoy Bakshi ·

arre yaar look at the q...it says for n≥2[1][1][1]

341
Hari Shankar ·

a_{n+1} = \frac{a_n}{2} + \frac{n^2-2n-1}{n^2(n+1)^2} = \frac{a_n}{2} + \frac{2}{(n+1)^2} - \frac{1}{n^2}

\Rightarrow a_{n+1} - \frac{2}{(n+1)^2}= \frac{1}{2} \left(a_n - \frac{2}{n^2} \right)

So if you define a sequence {bn} as b_n = a_n - \frac{2}{n^2} then this sequence obeys the recurrence b_{n+1} = \frac{b_n}{2}

106
Asish Mahapatra ·

Q4. nan = (n-1)Sn
(n-1)an-1 = (n-2)Sn-1

Subtracting,
n(an - an-1) + an-1 = (n-1)an + Sn-1
=> an - (n-1)an-1 = (n-1)an-1/(n-2)

=> an = (n-1)2an-1/(n-2) = (n-1)2(n-2)(n-3)(n-4)....2.a2
also 2a2 = 1 + 1 + a2
=> a2 = 2

=> an = 2(n-1)(n-1)!

quite long i guess

341
Hari Shankar ·

5) Rewriting the recurrence as n^3 a_n = (n-1)^3 a_{n-1} + n(n-1)

Let b_n = n^3 a_n

Then we have the recurrence b_n -b_{n-1} = n(n-1)

This can be summed up telescopically to arrive at

b_n-b_1 = \sum_{k=2}^n k^2-k = \sum_{k=1}^n k^2-k = \frac{n(n^2-1)}{3}

b1=0 and hence a_n = \frac{(n^2-1)}{3n^2}

1
Che ·

thanx for replies prophet sir ,asish and akari

:)

1
Che ·

btw q2 is left

23
qwerty ·

continuing from prophet sir's # 10 post

b_{n}=2b_{n+1}

b_{n-1}=2b_{n}

b_{n-2}=2b_{n-1}=4b_{n}=2^{2}b_{n}

\Rightarrow b_{n-k}=2^{k}b_{n}

\Rightarrow b_{n-(n-1)}=2^{(n-1)}b_{n}

\Rightarrow b_{1}=2^{(n-1)}b_{n}

\Rightarrow b_{n}= \frac{b_{1}}{2^{(n-1)} }

also\;\;\; b_{n}= a_{n}-\frac{2}{n^{2}}

b_{1}= a_{1}-\frac{2}{1}= -1

a_{n}-\frac{2}{n^{2}}= \frac{-1}{2^{n-1}}

a_{n}=\frac{2}{n^{2}}+\frac{-1}{2^{n-1}}= \frac{2^{n}-n^{2}}{2^{(n-1)}n^{2}}

1
Che ·

ya qwerty thats correct :)

btw u can do this

\\\texttt{after \; u\; got\; this}\\ a_{n+1}-\frac{2}{(n+1)^{2}}={1\over 2}\left(a_{n}-\frac{2}{n^{2}}\right)\\ \Rightarrow \prod_{k=1}^{k=n-1}\left ( a_{k+1}-\frac{2}{(k+1)^{2}} \right )=\prod_{k=1}^{k=n-1}\left ( {1\over 2}\left(a_{k}-\frac{2}{k^{2}}\right) \right )\\\\\Rightarrow a_{n}-\frac{2}{n^2}=\frac{1}{2^{n-1}}\left ( a_{1}-\frac{2}{{1}^{2}} \right )

23
qwerty ·

lol ya [5] ,

1
Che ·

for 1st one oder way

a_{n+1}=2a_{n}+1\Longleftrightarrow a_{n+1}+1=2(a_{n}+1)

\therefore a_{n}+1=2^{n-1}(a_{1}+1)=3\cdot 2^{n-1},

threfore giving a_{n}=3\cdot 2^{n-1}-1\ (n\geq 1)

Your Answer

Close [X]