Sequence and series

Ques1) If a > 0 , b > 0 , c > 0 and the min value of a (b2 + c2) + b(c2 +a2 ) + c(a2+b2) is k abc then prove that k =6.

Ques2) If a,b,c are three real numbers such that b+c-a , c+a-b , and a+b-c are positive, then the expression (b+c-a) (C+a-b) -abc is
(a)positive (b) negative (c) non positive (d) non negative

Ques3) If a,b,c are in A.P ; p,q,r in H.P and ap,bq,cr are in G.P. then show that p/r + r/p is aquals to a/c + c/a.

3 Answers

11
Devil ·

AM-GM for 1st sum....

62
Lokesh Verma ·

First one directly apply AM GM on ab^2, ac^2, bc^2.. and so on.. (motivation.. you have a 6 .. so there could be 6 terms!)

Third one..

a+c=2b

1/p+1/r=2/q
(p+r)q/2=pr

apcr=b^2q^2

(p2+r2)/rp =(p2+r2)/rp+2-2

=(p+r)2)/rp - 2

=4p2r2q2(rp) -2

=4prq2 -2

= 4b2/ac - 2

= (a+c)2/ac - 2

= (a2+c2)/ac

= a/c + c/a

66
kaymant ·

For the first one, we have
a(b2+c2)+b(c2+a2)+c(a2+b2)abc = bc + cb + ca + ac + ab +ba ≥ 6

Your Answer

Close [X]