Prove that for positive real numbers a, b, c, d, we have
\[ \frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{c}+\frac{1}{d}}\le\frac{1}{\frac{1}{a+c}+\frac{1}{b+d}} \]
-
UP 0 DOWN 0 0 0
Prove that for positive real numbers a, b, c, d, we have
\[ \frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{c}+\frac{1}{d}}\le\frac{1}{\frac{1}{a+c}+\frac{1}{b+d}} \]