sin 2 (A+B) = p2 / {p2 + (1 - q )2}
cos 2(A+B) = { (1-q)2 - p2 } / { (1 - q)2 + p2 }
It is given that tan A and tan B are the roots of t2-pt+q=0. Find in terms of p and q:
i) sin2(A+B)
ii)cos 2(A+B)
sin 2 (A+B) = p2 / {p2 + (1 - q )2}
cos 2(A+B) = { (1-q)2 - p2 } / { (1 - q)2 + p2 }
you have to express sin2(A+B) in terms of tan A and tan B
Which is not very difficult if you use
sec2(A+B) = 1+ tan2(A+B) = 1+\left[\frac{tan A+ tan B}{1-tan A \times tan B} \right]^2
You know tan A + tan B = p
and tan A. tan B =q
Now solve :)