729
1>
S=1/12+1/22+1/32.......upto ∞
S1=1/12+1/32+1/52.....upto ∞
S2=1-1/22+1/32-1/42......upto ∞
then the value of 486 S1/S2
solution required
-
UP 0 DOWN 0 0 6
6 Answers
As far as I know , one way of directly solving these sum is to take help of FOURIER SERIES .
Expanding the fourier series f (x ) = 2 x - x2 in ( 0 , 3 ) yields ,
2 x - x2 = - \sum_{n = 1}^{}{\propto }\frac{9}{n^{2}\pi ^{2}}\; cos \frac{2n{\pi}x}{3}\; + \sum_{n=1}^{}{\propto } \frac{3}{n{\pi }}\; sin \frac{2n{\pi }x}{3}
Putting x = 3 / 2 , we get 3 - 94 = \frac{9}{\pi ^{2}} \times [- \sum_{n = 1}^{}{\propto }\frac{cos \;n{\pi }}{n^{2}} ]
Which in turn gives , 112 - 122 + 132 - .......... upto infinity = \frac{\pi ^{2}}{12}
Similarly , expanding f ( x ) = - π , if -π < x < 0
= x , if 0 < x < π
we get f ( x ) = -\frac{\pi }{4}\; - \;\frac{2}{\pi } \;[ cos x + \frac{cos \;3x}{3^{2}} + \frac {cos\;5x}{5^{2}} + ...... ] + 3\; sin \; x - \frac{sin \;2x}{2} + \frac{3\; sin \;3x}{3} - \frac{4\;sin\;4x}{4} + ......
Putting x = 0 ,we get f ( 0 ) = -Ï€4 - 2Ï€ [ 112 + 132 + 152 + ......]
Now f ( x ) is discontinuos at x = 0 , f (0^{-}) = \pi \;and\; f (0^{+})= 0
So \;\;f( 0 ) = \;\frac{1}{2}\; [{\; f(0^{-} ) + f(0^{+})\;]= \frac{1}{2}\;[ \pi \;+\;0 ] = \frac{\pi }{2}
Hence \frac{\pi }{2} = -\frac{\pi }{4} - \frac{2}{\pi }\;[\;\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}} + ......]
From where we get \;\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}}\;+...... = \frac{\pi ^{2}}{8}
So we get S1 = \frac{\pi ^{2}}{8}
and S2 = \frac{\pi ^{2}}{12}
So 486 x S1 / S2 = \frac{\pi ^{2}}{8}\times \frac{12}{\pi ^{2}}\times 486 = 729
I am not exactly sure abt this thing -- its too complicated -- so this post is more of a copy -
paste -- hope you don't mind
actually teh value of des series shud be known.......des r quiet common given in many books......as far as derivation goes....i hav no idea...