area of triangle=√s(s-a)(s-b)(s-c)
since A.M>G.M
s+(s-a)+(s-b)+(s-c)/4 >4√s(s-a)(s-b)(s-c)
(s+(s-a)+(s-b)+(s-c)/4) wud b maximum wen a=b=c;therfore itz an equilateral triangle
can solve this usin maxima minima bt dat wud b lenthy process
Given 2s be the perimeter of a triangle,prove that trangle of greatest area is equilateral.
area of triangle=√s(s-a)(s-b)(s-c)
since A.M>G.M
s+(s-a)+(s-b)+(s-c)/4 >4√s(s-a)(s-b)(s-c)
(s+(s-a)+(s-b)+(s-c)/4) wud b maximum wen a=b=c;therfore itz an equilateral triangle
can solve this usin maxima minima bt dat wud b lenthy process