-
1 ∫cosx-sinx/ sin2x 2∫sinx/(1-sinx)0.5 ...
-
√((1-√x)/(1+√x)) ...
-
∫sin(4x)etan2x ...
-
π∫0 dx/1+cos2x ...
-
π∫0 xcotxdx ...
-
*Image* ...
-
∫x2/√1-x4dx ...
-
∫√cotx+√tanx ...
-
∫√cotx+√tanx ...
-
Range of f(x)=frac{{{x}^{2}}+34x-71}{{{x}^{2}}+2x-7} is a) [5,,9] b) (-infty ,,5]cup ,[9,,infty ) c) (5,,9) d) None of these ...
-
The value of alpha for which the function f(x)=1+alpha x,,alpha e 0 is inverse of itself will be a) -2 b) -1 c) 1 d) 2 ...
-
*Image* ...
-
*Image* ...
-
*Image* ...
-
limx→0 sin(Ï€cos2x)/x2 ...
-
mathop {lim }limits_{x o 0} frac{{sin (pi {{cos }^2}x)}}{{{x^2}}} = a) - pi b) pi c) frac{pi }{2} d) 1 ...
-
*Image* ...
-
*Image* ...
-
*Image* ...
-
*Image* ...
-
find the pint on the curve y^2=4x which is nearest to the point (2, -8) ...
-
\int_{0}^{1}\frac{\log_{e}(1+x)}{1+x^2} ...
-
Let R be a relation on N defined by x + 2y = 8 . The domain of R is a) {2, 4, 8} b) {2, 4, 6, 8} c) {2, 4, 6} d) {1, 2, 3, 4} ...
-
1. lim x→0 (1+x)1/x-e+ 1/2 ex/x2 2. lim x→0( ax+bx+cx/3 )2/x ...
-
*Image* Pl gv solution ...
-
A particle moves in a straight line so that its velocity at any point is given by , where are constant. The acceleration is A. Zero B. Uniform C. Non-uniform D. Indeterminate ...
-
\lim_{x\rightarrow \infty} 100[((x+1)(x+2)...(x+100))^{1/100} - x] ...
-
Q1: *Image* a)-1 b)loge1 c)1 d)none q2: *Image* a) 1/2 sin3a b) 1/2 cosec2a c)sin3a d)cosec3a q3: *Image* a)1 b)-1 c)0 d)none q4:if 0<x<y then *Image* a)e b)x c)y d)none q5: *Image* a)1 b) sinx/x c) x/sinx d)none ...
-
mathop {lim }limits_{n o infty } left[ {frac{1}{n} + frac{1}{{n + 1}} + frac{1}{{n + 2}} + ....... + frac{1}{{3n}}} ight] = a) 0 b) {log _e}4 c) {log _e}3 d) {log _e}2 ...
-
(A) ∫1/ cos6(x) + sin6(x) (B) ...