-
*Image* ...
-
(a) )\int 1/COS^{6}(x)) + SIN^{6}(X)) ...
-
lim [(1+x)^(1/x) -e]/x x→0 ...
-
(A) ∫dx/ sin11xcosx (B) ∫ cos3x/sin11x please show the steps ...
-
Integral Of (a) Sec(X)+1 (B) ∫{cos(5x) + cos(4x)}/1-2cos(3X) (C) ∫ {F(x)φ'(x) + F'(x)φ(x)} / (F(x)φ(x)+1) φ(x)f(x) + 1 ...
-
If ∫f(x)sinxcosxdx=lnf(x)/(b2 -a2) +c then f(x)=? ...
-
Integral Of (a) Sec(X)+1 (B) ∫{cos(5x) + cos(4x)}/1-2cos(3X) (C) ∫ {F(x)φ'(x) + F'(x)φ(x)} / (F(x)φ(x)+1) φ(x)f(x) + 1 ...
-
If f(x) = frac{x}{{x - 1}}, then frac{f(a)}{f(a+1)} a) f(-a) b) fleft( {frac{1}{a}} ight) c) f({a^2}) d) fleft(frac{-a}{a-1} ight) ...
-
viii) f( x) =((2x-1)/(x-1)) ...
-
f(x)= log[x]/x evaluate limit x→ ∞ ...
-
mathop {lim }limits_{n o infty } frac{{{1^p} + {2^p} + {3^p} + ........ + {n^p}}}{{{n^{p + 1}}}} = a) frac{1}{{p + 1}} b) frac{1}{{1 - p}} c) frac{1}{p} - frac{1}{{(p - 1)}} d) frac{1}{{p + 2}} ...
-
f(x)= (1-cosx) (1-cosx)..... upto ∞ ...
-
f(x)=mod(x-1)-[x] evaluate limit x→ 1 ...
-
f(x+y)=f(x)+f(y) f(x)is a)even or b)odd function please show the working ...
-
f(x)=|cos x| prove that it is periodic f(x)= [x] prove that it is non periodic ...
-
f(x)= log[x]/x evaluate limit x→ ∞ ...
-
The range of f(x)=cos (x/3) is a) [-1/3,,,1/3] b) [,-3,,3] c) [1/3,,,-1/3] d) [– 1, 1] ...
-
The relation R defined on the set A = {1, 2, 3, 4, 5} by R = {(x, y) : |{x^2} - {y^2}| < 16} is given by a) {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)} b) {(2, 2), (3, 2), (4, 2), (2, 4)} c) {(3, 3), (3, 4), (5, 4), (4, 3), ( ...
-
The period of the function f(x)=|sin x|+|cos x| is a) pi b) pi /2 c) 2pi d) None of these ...
-
Find the domain of the following fu *Image* nctions : ...
-
*Image* ...
-
Find the common area of the regions x2+y2≤100 and sin(x+y)>0. ...
-
no. of solns. of 2cos x =|sin x| in[-2Ï€,5Ï€] ...
-
In a certain town 25% families own a phone and 15% own a car, 65% families own neither a phone nor a car. 2000 families own both a car and a phone. Consider the following statements in this regard: 1.10% families own both a c ...
-
If f(x) is an invertible func such that f(x) + f(-x)=2a then ∫a-xa+x f-1(t)dt equals : ...
-
If f(x)=sqrt{|x-1|} and g(x)=sin x, then (fog)(x) is equal to a) sin sqrt{|x-1|} b) |sin x/2-cos x/2| c) |sin x-cos x| d) None of these ...
-
If for two function f and g ; gof is a bijection, then correct statement is a) Both g and f must be bijections b) g must be a bijection c) f must be a bijection d) Neither of them may be a bijection ...
-
Y= ex+e-x/ex-e-x p.t. dy/dx=1-y2 ...
-
Let n(A) = n. Then the number of all relations on A is a) {2^n} b) {2^{(n)!}} c) {2^{{n^2}}} d) None of these ...
-
The value of a is coming as -1 and b as 1/2. But the problem is that when they are placed in the equation the result is not zero. ...