-
∫ dx/sec x+cosec x and ∫ 1/3√x+4√x + log(1+x1/6)/ x + x dx ...
-
1) \int_{0}^{2a}\sqrt{2ax-x^{2}} 2) \int_{-1/2}^{1/2}\left ( [x]+ln(\frac{1+x}{1-x}) \right )dx 3) \int_{-2}^{2}\frac{3x^{5}+4x^{3}+2x^{2}+x+20}{x^{2}+4} ...
-
1) find the sum of the series \frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}................\infty 2) if a function defined such that f:R→R f(x)-2f(\frac{x}{2})+f(\frac{x}{4})=x^{2} find f(x) 1st one is a doubt[1] ...
-
If *Image* and f is differentiable function satisfies : *Image* *Image* then find f(x) not a doubt....jus found it gud ...
-
*Image* i m not able to prove > but i m getting x>=sinx!!!! is the question correct?????? ...
-
f is a continuous function that maps the closed unit interval I = [0,1] into itself. Prove that if f(f(x)) = x for all x ε I, then f is monotonic ...
-
*Image* why have they used h---->1 for LHL and h----->0 for RHL??can u account for this! ...
-
1)Find the value of "t" for which- e2x= t x , has only one solution. 2)Let "g" be the inverse function of a differenciable function "f" such that, G(x) = 1/g(x). If f(4)=2 & f'(4)= 1/16, then (G'(2))2 =? 3) Value of "a" for w ...
-
Functions f(x) & g(x) are such that - (f.g)'= (f'.g'). If f(x) = ex2 and g(1)=e, the domain of g(x) being (1/2,∞), find (a+b) if g(5) = aeb. ...
-
f(x)=ax3+bx2+cx+d g(y)=ay3+f'''(m)y2/2+cf''(m)/1+f(m)=0. f(x) has roots α1, α2, α3 and g(y) has corresponding β roots. PT difference between the corresponding roots are equal. ...
-
*Image* ...
-
*Image* ...
-
Q1 let f:R→R be defined as f(x)= x2+ax+1/x2+x+1 .the set of all exhasutive values of a for which f(X) is onto ans given is φ..it is wrong naa ?? Q2 whats min value of (sin-1(sin(x)))2-sin-1(sin(x)) Q3 if f(x)=x(2-x), 0≤x ...
-
*Image* ...
-
*Image* ...
-
*Image* ...
-
it was a simple sum but its aftermath wa too much d/dx of under root 1-cos2x/1=cos2x (means whole function under root) easily solved it to tan^x now under root means tan x so answer sec^2 x simple but not the right answer ans ...
-
Discuss continuity of e[log{l{x2}l2}] and draw its graph where all brackets have their usual meaning... dont hesitate to tell me if it is not solvable at our level ...
-
f(x)=x2-4x g(x)=min f(t) ; x≤t≤x+1 ; 0≤x<4 i know this type ahs been discussed before...but i just need graph to check myself....no calculations....[1] ...
-
limn→∞sin2(π (n!)2-n! ) ...
-
Q1 \int_{a}^{b}\frac{e^{x/a}-e^{b/x}}{x}dx Q2 \int_{0}^{1}\frac{lnx.ln(1-x)}{(1+x)^2}dx ...
-
The value of the definite integral I = ∫ [ 0 to Π][ x (1+l cos x l ) ] dx = ? (A) 2 2 Π(B) 2 Π(C) 2 Π(D) 4 Π...
-
∫e^x(1+sinx)/(1+cosx) ...
-
MULTIPLE ANS QS 1) Lt x--->2 [(f(x) -9) / (x-2)] = 3 Then Ltx-->2f(x) is ? (A) 2 (b)5 (C) 9 (D)12 ...
-
1) f(x) = i) Sin[x] ; [x] ≠0 [x] ii) 0 when ; [x] = 0 Find -- Lim (x→0) f(x). 2) Lim(x→∞) {(x+6)/(x+4)}x+4 = ? 3) If x>0, Lim(x→0) {(sinx)1/x +(1/x)sinx} = ? 4) Lim(x→ -∞) {x4 Sin(1/x) +x2}/{1+ lx3l } = ? ...
-
Q1. \lim_{x\rightarrow 0}\frac{sintanx+ln(\sqrt{1+sin^2x}-sinx)}{ln(1+x^3)} Q2. A=\begin{bmatrix} 1 &1 &1 \\ -1 &0 &2 \\ 2 &1 &0 \end{bmatrix} , I is the unit matrix of order 3X3 and aA3 + bA2 + cA + I = B where B is null mat ...
-
1. lim na sin2n!/n+1 n→∞ a E (0,1) is equal to (a) 0 (b) 1 (c) ∞ (d) does not exist 2.lim {11/sin2x + 21/sin2x+....+n1/sin2x}sin2x x→0 3. lim xn+nxn-1+1/e[x] x→∞ ...
-
DOUBT f(x)= ax2+bx .FInd all possible values of 'a' such that there exist at least one positive value of 'b' for which both domain and range of f(x) lie in same set ...
-
\int_{0}^{[x]}{(\int_{0}^{[x]}{([x]-[x-\frac{1}{2}])dx)dx}} ...
-
not a doubt I\! f \;\; 2f(x) + f(-x) = \frac{1}{x}sin(\frac{x^2-1}{x}) , F\! i\! n\! d \; \; \int_{1/e}^{e}{f(x)dx} ...