-
*Image* *Image* *Image* please forgive me for the jigsaw puzzle like photos have a very old webcam ...
-
f:R→R suchthat f(1)=2 f(2)=8 f(x+y) -kxy=f(x)+2y2 f(x+y)*f(1/(x+y))= 1.2k 2.k 3.k2 4.k+1 ...
-
\int_{0}^{[x]}{a^t/a^[^t^]}dt (a>0), where [] denotes greatest int function is? ...
-
Q2 *Image* ...
-
Q 26 mein got bowled *Image* ...
-
plot the graph y2=(x-1)(x-2)(x-3) ...
-
Q1 f(x)=e1/(x-1) Q2 y2=(x2-a2)/x2 ...
-
q4)minimum value of [ (x 1-x 2)2+ (12 + (1-x1 2)1/2 - 2√x2 )2 ]1/2 is a)4√5+1 b)4√5-1 c)√5+1 d)√5-1 ...
-
given that f is an odd function with peroid 2 and continuous fr all x an g(X)=0∫xf(t) dt,then a)g(x) is an odd function b)g(2n)=1 c)g(2n)=0 d)none ...
-
if ab=2a+3b, a>0,b>0 then minimum value of ab is??? ...
-
\lim_{x\rightarrow a}\frac{cosx.log(x-a)}{log(e^{x}-e^{a})} ...
-
*Image* how is it done ? ...
-
Q1 \lim_{m\rightarrow infinity}[(\frac{e^{-100}.100^{100}}{100!})^{m}+5^{m}]^{1/m} ...
-
Statement 1: and Statement 2: 1. Statement 1 is True, statement 2 is True; statement 2 is a correct explanation for statement 1. 2. Statement 1 is True, statement 2 is True; statement 2 is not a correct explanation for statem ...
-
x^3\frac{dy}{dx}-4x^2coty=e^xcosecy solve the de....and find solution given that y(1)=0 ...
-
Statement 1 *Image* Stat2 *Image* ...
-
suppose that f(x) is properly integrable over [a,b] and g(x) properly integrable over [a,b+d], d>0. then prove that \lim_{\delta \rightarrow +0}\int_{a}^{b}{}f(x)g(x+\delta )dx=\int_{a}^{b}{f(x)g(x)}dx ...
-
integrations: q1)∫(2x12 + 5 x9) / ((x5 + x3 +1) dx Q2)∫x4/(1-x2)3/2 dx ...
-
1)\lim_{x->0}xlogsinx \; 2) \lim_{x->0} (cosecx)^{^{1/logx}} 3)\lim_{x->0} ((1+x)^{^{1/x}}-e)/x 4)\lim_{x->0}[(sinx)^{1/x}+ (1/x)^{sin x}] ...
-
I thought sir is having busy days so why not we start a thread 4 the calculus I will daily post question on calculus (both integral and differential) So lets take off[1] Q1 If [x] denotes the integral part of x , then the dom ...
-
∫ 3+2cosx/(2+3cosx)2 ...
-
∫([3+2cosx)/(2+3cosx)2]dx ...
-
Let f:[0,1]\to\mathbb{R} be continuous such that \int_0^1 f(x)\ \mathrm{d}x=1 Determine the minimum possible value of \int_0^1 (1+x^2)f^2(x)\ \mathrm{d}x Also, determine the function for which this minimum is attained. ...
-
Find the maximum attained by \int_0^1 x^2 f(x) - x f^2(x) dx ...
-
*Image* I have the following doubts . Please give me some idea as to how to approach these kinds of problems . Please do not solve them for me . ...
-
find the no of functions such that I1=0∫1f(x) dx = 1, I2=0∫1xf(x) dx =a and I3=0∫1x2f(x) dx =a2 is a)1 b)2 c)0 d)infinite plz provide suitable arguments and not stray answers ...
-
chatle chalte ye sawaal bhj dekhe: q1)the graph of y=f(x) is symmetrical abt the lines x=1 and x=2,then a)f(x+1)=f(x) b)f(x+2)=f(x) c)f(x+3)=f(x) d)none q2)lim x->oo ( (x+5)tan-1(x+5) + (x+1)tan-1(x+1) a)Ï€/2 b)Î c)2Î d)no ...
-
\int_{0}^{\infty}{\frac{x^{m-1}}{(1+x)^{m+n}}} = k\int_{0}^{\infty}{\frac{x^{n-1}}{(1+x)^{m+n}}} find k ...
-
Q1 \lim_{n\rightarrow infinity}(\frac{1}{n^{100}}\sum_{r=1}^{n}{r^{99}}) ...
-
-2∫3 x x2-1 dx ?? ...