-
√x^12-x^9+x^4-x+1 ...
-
s2 = Σ(yi - a - bxi)2 = ƒ(a,b) (i= 1,2....n) Given: ∂s2/∂a = 0 ∂s2/∂b = 0 Then solve for a and b ...
-
\hspace{-16}\bf{(1)\; \int\frac{1}{x^4.(x^6+1)}dx}$\\\\\\ $\bf{(2)\;\; \int\frac{2+\sqrt{x}}{(1+x+\sqrt{x})^2}dx}$\\\\\\ $\bf{(3)\;\; \int \left\{1+\tan x.\tan (x+\theta)\right\}dx}$\\\\\\ $\bf{(4)\;\; \int \frac{\sec x.\tan ...
-
What is the derivative of f(x)=x |x| ? ...
-
lim [ o∫x ex/ o∫x e2x2 ]dx x→∞ ...
-
0∫1 log( 1 + x + 1 - x )dx ...
-
0∫4a cosec(x - 3a).cosec(x - 2a)dx ...
-
∫01 x /1 + x2 dx ...
-
\hspace{-16}\bf{\lim_{x \rightarrow 0}\frac{1-(1+x)^{\frac{1}{x}}}{x}=} ...
-
∫(-100 to 100) [t3]dt ...
-
A real valued function f is defined on the interval (-1,2).A point x is said to be a fixed point of f if f(x)=x.Suppose that f is a differentiable function such that f(0)>0 and f(1)=1.Show that if f'(1)>1,then f has a f ...
-
Please give me a hint to solve this problem....... *Image* ...
-
*Image* ...
-
∫(a2-b2 *x2))-3/2 dx ...
-
*Image* [x]=Greatest Integer function ...
-
lim n ->∞ 1/2n log(2nCn) ...
-
∫ tanx ...
-
\hspace{-16}$If $\bf{f(x)=\frac{x^2}{1+x^2}.}$ Then Determine value of the following expression\\\\\\ $\bf{f\left(\frac{1}{2000}\right)+f\left(\frac{2}{2000}\right)+...+f\left(\frac{1999}{2000}\right)+f\left(\frac{2000}{2000} ...
-
Differentiate this ( a+x - a-x )/( a+x + a-x ) ...
-
lim sin[x]/[x] as x→0 ...
-
*Image* ...
-
if f(x)= 1/3 (f(x+1)+ 5/f(x+2) ) and f(x)>0 and finite for all x belonging to R,then limx→∞ f(x) is a) 2/5 b) 5/2 c) 10 d)0 ...
-
SOLVE dy/dx=1/(x^2+y^2) ...
-
\hspace{-16}$If $\bf{\mathbb{I} = \int_{0}^{\pi}\frac{\pi}{\pi^2-\cos^2 (x)}dx}$, Then $\bf{[\;\mathbb{I}\; ]=}$ ...
-
If the area enclosed between x2+y2≤9(pi)2 and sin(x-y)≥0 is m(pi)3/n sq units,then find [m]-[n]+[ m+n/m-n ]? ...
-
1)If \dpi{100} \fn_jvn \int_{a}^{b}(2+x-x^{2}) is maximum find a+b? 2)For f(x)= 6/1+31ex the possible number of different integral values which f(x) can take is? 3)if \dpi{100} \fn_jvn \lim_{x\rightarrow \infty }\sqrt[3]{8x^{ ...
-
If y=x dy/dx + dx/dy then find y when x=4? ...
-
\hspace{-16}\bf{(1)\;\; \int_{e^{e^{e}}}^{\infty}\frac{1}{x.(\log x).({\log \log x}).(\log \log \log x)^{\frac{4}{3}}}dx}$\\\\\\ $\bf{(2)}$ For Which Integer $\bf{ 1\leq m\leq 10}$ is it true that\\\\\\ $\bf{\int_{0}^{\pi}(\c ...
-
show that ∫[sspi][/ss0]|(sin nx)/x|dx ≥ (2/pi)|1+(1/2)+(1/3)+.......(1/n)| ...
-
let f(x)=∫(0 to 1)|t-x|tdt for all real x. What is the minimum value of f(x). ...