$Here $cos(sin\theta)=Re\left \{ cos(sin\theta)+isin(sin\theta)\right \}=Re(e^{isin(\theta)})$\\\\ So $\int_{0}^{2\pi}e^{cos\theta}\times Re(e^{isin\theta})d\theta=Re\left \{ \int_{0}^{2\pi}e^{cos\theta+isin\theta}d\theta \right\}$\\\\ $Re(\int_{0}^{2\pi}e^{e^{i\theta}}d\theta)=$
lim 0 to 2Π∫ecosθcos(sinθ)dθ = ?
1) 2Î 2) Î 3) Î 2 4) none
-
UP 0 DOWN 0 0 5
5 Answers
man111 singh
·2010-12-29 21:57:47
Euclid
·2010-12-30 07:42:11
I = ∫ecosθcos(sinθ)dθ = ∫Re(eiθ)dθ
= ∫ {1 + cosθ1 + cos2θ2.1 + cos3θ3.2.1 + ....}dθ
taking limits from 0 to 2Î , only first term exists and hence I = 2Î