application of derivative

1. A function f(x) is defined so that for all real x {f(x)}n = f(nx). Prove that
f(x).f'(nx) = f'(x).f(nx).

2 Answers

1
जय ·

n. [ f(x)] n-1.f'(x) = n.f'(nx)

[f(x)]n.[f(x)]-1 .f'(x) = f'(nx)

[f(x)]n .f'(x) = f'(nx).f(x) -------1

now

from ques

[f(x)]n = f(nx)

therefore from ----1

f(nx).f'(x) = f'(nx).f(x)

1
jangra28192manoj jangra ·

thanks .i was confused as i take f(x) = enx

Your Answer

Close [X]