using the given info...f(x) = (x-1)4
then (x+1)n = [λ(x)](x-1)4 + ax3 + bx2 + cx + d (where λ(x) is a function of x though we dont need to bother abt this function)...
replacing x-1 = t...we get..
(t+2)n = nC0 tn + nC1 tn-1.2 +......+ nCn-3 t3.2n-3 + nCn-2 t2.2n-2+ nCn-1 t.2n-1 + nCn.2n
so now nCn-3 t3.2n-3 + nCn-2 t2.2n-2+ nCn-1 t.2n-1 + nCn 2n = at3 + (3a + b)t2 + (3a + 2b + c)t + (a+ b+ c + d)
Now by comparing the L.H.S and R.H.S. we can get the value of a,b,c,d in terms of n... [1]