Continuity

Let f(x) = (a(1-sinx) + bcosx + 5)/x2 if x<0

3 if x=0

(1+(cx+dx3)/x2 )1/x if x>0

If f is continuous at x=0 , then the values of a+b+c is ?

A) 2 (B) 0 (C) -4 (D) -5

8 Answers

62
Lokesh Verma ·

you have to find limit x tending to zero..

in the first one, it will be found by LH Rule...

Let f(x) = (a(1-sinx) + bcosx + 5)/x2 if x<0

f(x) = (-acos x - b sin x)/2x
f(x) = (asin x - b cos x)/2

so limit x tending to 0 from the -ve side will give -b/2 =3

so b=-6

not the other part... can you find the RHL using limits?

4
UTTARA ·

Nishant Sir Can u help me out with (1+(cx+dx3)/x2 )1/x if x>0

part plzz

11
Tush Watts ·

Is the ans (d) ?/????

4
UTTARA ·

Yes the ans is D
But post the solution plzz

11
Tush Watts ·

kk wait posting

11
Tush Watts ·

L..HL = lim x → 0 - f(x) = lim h→ 0 f (0 -h )
= lim h → 0 a (1 - h sin h) + b cos h + 5h 2

Since f(x) is continous as h→ 0 , Numerator must be =0
therefore, a+b+5 =0 ...........................(i)

L.H.L = lim h→0 a (1 -h sin h) - (a+5) cos h +5h 2
= lim h→0 [(a+5) (1 - cos h)h 2 - a h sin hh 2 ]
= (a +5) (1/2) - a
= (5 -a) /2 = Value of the function = f(0) = 3 [bcoz f(x) is continous]
Thus, 5-a = 6 that implies a= -1

From eqn (1), -1 + b +5 =0
so b =-4

Also, R.H.L = lim x→0 + f(x) = lim h→0 f(0 +h)
= lim h→0 { 1 + (c h +d h 2) /h } 1/n
= lim h→0 { 1 + (s + d h 2 ) / h } 1/n
R.H.L is finite, so c = 0

So, therefore, a+b+c = -5

4
UTTARA ·

Thanks Tushar

11
Tush Watts ·

One samll mistake
it's 1/x not 1/n

Your Answer

Close [X]