*definite*

0∫pi/4(etanx(secx-sinx))dx

2 Answers

1357
Manish Shankar ·

∫etanxsecxdx-∫etanxsinxdx

solving the second using ∫etanx as first function

∫etanxsinx=etanx∫sinxdx-∫[(detanx/dx)∫sinxdx]dx

=-etanxcosx-[-∫etanxsec2xcosxdx

=-etanxcosx+∫etanxsecxdx

∫etanxsecx-∫etanxsinx=∫etanxsecx-(-etanxcosx+∫etanxsecxdx)

=[etanxcosx]0π/4=e/√2 - 1

33
Abhishek Priyam ·

Gr8,
options were e/√2 - 1 , e/√2+1, 0 and none
so i drew graph of given fn and eliminated 0, and e/√2+ 1 as area was seeming much less.... so i choosed: e/√2 - 1

Your Answer

Close [X]