\hspace{-16}$If $\bf{\mathbb{I}=\int_{0}^{\pi}\frac{\sin(884\;x).\sin(1122\;x)}{\sin (x)}dx}$ and $\bf{\mathbb{J}=\int_{0}^{1}\frac{x^{238}.(x^{1768}-1)}{(x^2-1)}dx}$\\\\\\ Then value of $\bf{\frac{\mathbb{I}}{\mathbb{J}}=}$
-
UP 0 DOWN 0 0 0
\hspace{-16}$If $\bf{\mathbb{I}=\int_{0}^{\pi}\frac{\sin(884\;x).\sin(1122\;x)}{\sin (x)}dx}$ and $\bf{\mathbb{J}=\int_{0}^{1}\frac{x^{238}.(x^{1768}-1)}{(x^2-1)}dx}$\\\\\\ Then value of $\bf{\frac{\mathbb{I}}{\mathbb{J}}=}$