definite integrals

Q1. \int_{-1}^{1}{\frac{d(tan^{-1}\frac{1}{x})}{dx}dx}

Q2. \int_{-1}^{3}{(tan^{-1}\frac{x^2+1}{x}+tan^{-1}\frac{x}{x^2+1})dx}

16 Answers

24
eureka123 ·

ans1=pi/2 ??

106
Asish Mahapatra ·

nope [2] ans : -pi/2

24
eureka123 ·

and ans 2=2pi ??

1
" ____________ ·

for second one

\int \tan^{-1} \frac{x^2 + 1}{x}+ cot^{-1}\frac{x^2 + 1}{x} dx

\int \frac{\pi }{2} dx \rightarrow \frac{\pi }{2}\int_{-1}^{3}{dx}= \frac{\pi }{2}\left(3- ( -1 ) \right) \rightarrow \frac{\pi }{2} .4\rightarrow 2\pi

24
eureka123 ·

ya soln 2 is rite

@asish...
have u solved 1 ???i cant understand how ans is -pi/2

@SR
i have time and again critisiced the use of this stuff.....plz dont post data from mathematica ...I hope u take it in right spirit[1][6]

106
Asish Mahapatra ·

for 2. every one making same mistake (i think 99.9% sure)

for 1. i think the book (RD Sharma) is geniune in giving answer as -pi/2

24
eureka123 ·

whats ans for Q2 then ?

106
Asish Mahapatra ·

mathematica

24
eureka123 ·

and what abt Q2 ??

106
Asish Mahapatra ·

i think ans is \pi

24
eureka123 ·

ya its pi
0 3
∫ -pi/2 + ∫ pi/2
-1 0

-pi/2 +3pi/2

2pi/2

pi

106
Asish Mahapatra ·

tan-1(1/x) ≠cot-1(x) always....

i think this does it...

106
Asish Mahapatra ·

so, i presume answer given in the book is wrong??? (given: 2pi)

1
" ____________ ·

\tan^{-1} \frac{1}{x} = cot^{-1}x( in ,this ,case, it ,is, true )

cot ^{-1}x ( applying limits) = cot^{-1}( 1 ) - \left(cot ^{-1} ( -1 ) \right) =\frac{\pi }{2} - \left(\pi - cot^{-1} 1\right)\rightarrow \frac{\pi }{4} -\pi +\frac{\pi }{4} = \frac{\pi }{2}-\pi = -\frac{\pi }{2}

1
" ____________ ·

hence

for first one ans --- - pi/2

second --- 2 pi

1
Manmay kumar Mohanty ·

Q1) \int_{-1}^{0}{}(cot^{-1}x-\pi )dx+\int_{0}^{1}{cot^{-1}x}dx

isse -\pi aa raha hai...

in career point material given that

cot-1x = tan-1(1x), x \epsilon (0 , \infty)

= \pi + tan-1(1x) , x \epsilon ( -- \infty , 0)

Your Answer

Close [X]