Differential Equations

Q What is the solution for the differential equation
ydx+(x+x2y)dy=0 ?

9 Answers

1357
Manish Shankar ·

dx/dy=-x/y-x2

(1/x2)dx/dy+1/(xy)=-1

this might help

1
Honey Arora ·

hvn't got any idea still cn u plz explain further

1
Honey Arora ·

Q2) If y=(x +√1+x2)n,then (1+x2)d2y/dx2 +xdy/dx is? plz explain the sol. also

62
Lokesh Verma ·

dy/dx= 1+ x/√1+x2 = y/√1+x2

taking derivative,

d2y/dx2= (dy/dx)/√1+x2 - yx/(1+x2)3/2

d2y/dx2= y/(1+x2) - yx/(1+x2)3/2

also,
yx/(1+x2)3/2 = dy/dx. x/(1+x2)

so

d2y/dx2= y/(1+x2) - dy/dx x/(1+x2)

thus, d2y/dx2(1+x2) = y-xdy/dx

thus d2y/dx2(1+x2) + xdy/dx = y

Old question.. check solution below..

1
dimensions (dimentime) ·

this is for 1st just put 1/x = t u will get (-1/x2)dx = dt now it becomes simple solve further :)

1
Honey Arora ·

Q2 edited.......

62
Lokesh Verma ·

y = {x+√1+x2}n

dy/dx= n{x+ √1+x2}n-1 {1+ x/ √1+x2 }

dy/dx = ny/√1+x2

taking derivative,

d2y/dx2= n (dy/dx)/√1+x2 - n yx/(1+x2)3/2

d2y/dx2= n2y/(1+x2) - nyx/(1+x2)3/2

also,
nyx/(1+x2)3/2 = dy/dx. x/(1+x2)

so

d2y/dx2= n2y/(1+x2) - dy/dx x/(1+x2)

thus, d2y/dx2(1+x2) = n2y-xdy/dx

thus d2y/dx2(1+x2) + xdy/dx = n2y

Check if i have made any calculation mistake......

1
Honey Arora ·

no u r exactly right..........:)

62
Lokesh Verma ·

ok.. gr8 :)

Your Answer

Close [X]