Differential Equations Sikho...

A compilation of quesitons similar to the way bhargav had one :P (hence borrowed a part of the name..)

Keep solving and i will keep adding questions here...

To begin with first 5 are here...

Question 1) \left(\frac{dy}{dx}+1\right) x+\tan (x+y)=0

Question 2) f''(x)\left({1-f'(f(x))}\right) = f''(f(x)).(f'(x))^{2}

Question 3) xy' = y\ln(xy)

Question 4) y''=2x+(x^{2}-y')^{2}

Question 5) (1+x\sqrt{x^2+y^2})dx+(-1+\sqrt{x^2+y^2})ydy = 0

Question 6) x\frac{dy}{dx}+\left({\frac{dy}{dx}}\right)^2= y

Question 7) (x+y)(dx-dy)=dx+dy

Question 8) (2x^{2}+3y^{2}-7)xdx-(3x^{2}+2y^{2}-8)ydy = 0

Question 9) \frac{d^2y}{dx^2}(x^2+1) = 2x\frac{dy}{dx}

Question 10) \frac{dy}{dx}=\frac{yf'(x)-y^2}{f(x)}

63 Answers

1
avra ghosh ·

1) (dy/dx + 1)x + tan(x + y) = 0 let x + y = z or 1 + dy/dx=dz/dx so we get xdz/dx + tanz = o or cotzdz = -dx/x

1
avra ghosh ·

18) dy/dx + y/x = x2y3 or xdy + ydx = (xy)3dx or (xy)-3d(xy)=dx......i think nishant bhaiya u were luking 4 ds soln.......

62
Lokesh Verma ·

for Q 13

why do you want to write it as teh last step..

leave it at dy/dx=c log y + A

and try and integrate from there!

62
Lokesh Verma ·

Question 21) \frac{dy}{dx}=-\frac{3xy+y^2}{x^2+xy}

Question 22) (2x-y+1)dx+(2y-x-1)dy=0

Question 23) y^2dx+(x^2-xy)dy=0

Question 24) dy/dx=(\frac{x-y+3}{x-y+11})^2

Question 25) (y'-1/2y^2)sin x - y cos x = 0

Question 26) 4x^3y dx - (x^4+y^2)dy=0

Question 27)

62
Lokesh Verma ·

reserved

62
Lokesh Verma ·

reserved

62
Lokesh Verma ·

reserved

1
aieeee ·

7) dy / dx = (x + y - 1) / (x + y +1) ( using componendo and dividendo )

let x + y = a , so, 1 + dy/dx = da/dx , dy/dx = da/dx - 1

now,putting the value of dy/dx ,

da/dx = [ (a - 1) / (a+1) ] + 1 , da/dx = 2a / a+1

so, resolved as : ∫ da (a+1) / 2a = ∫ dx.

so, 1/2 ( a + lna ) = x + c.

values substituted cn be put 2 get the answer.

62
Lokesh Verma ·

@AIEEE there is an easier proof for 7 (more obvious proof than that) :P

1
aieeee ·

17 ) .cn be written as : dy/dx + 2y / x = sinx / x

we know, if eqn, is of form : dy/dx + p.y = q , where p and q are functions of x , then:

y. e∫p.dx = ∫q . e∫p .dx dx

here , p = 2/x and q = sinx / x.

so,the integrating factor here is : e∫2/x dx = e2 lnx.

now , it cn be solved.

1
aieeee ·

6) let z = dy/dx. so eqn. becomes y = xz + z2

so , by differentiating it , z = z + x dz/dx + 2z dz/dx

so , ( x + 2z ) dz/dx = 0. so, we get dz / dx = 0 i.e. z = constant and x + 2z = 0 i.e. z = - x/2.

first condition doesn't give any sufficient result. but by putting the 2nd condition ' we get :

4y + x2 = 0

1
aieeee ·

9) let dy/dx = p. thus the equation becomes : dp / dx ( x2 + 1 ) = 2x p

so, ∫dp / p = ∫ dx ( 2x / x2 + 1 )

so , ln p + c = ln ( x2 + 1 )

so, pc = x2 + 1. now, putting p = dy/dx

so , c ∫dy = ∫ dx ( x2 + 1 )

now, it cn be solved.

24
eureka123 ·

20
(x^2 \cos x -y)dx+xdy=0=>\frac {dy}{dx}=\frac {-x^2 \cos x +y} {x}=>\frac {dy}{dx}-\frac {y}{x}={-x\cos x}

=>y(\frac {1}{x})=\int \frac {1}{x}(-x\cos x) dx +C =>y=x[-\sin x +C]

24
eureka123 ·

19\frac {dy}{dx}+\frac {y}{x}=\cos x
=> y(x)=\int x \cos x \ dx +C=>xy=x\sin x -(-\cos x) +C
=>xy=x\sin x +\cos x +C

24
eureka123 ·

17
\frac {dy}{dx} +2\frac {y}{x}=\frac {\sin x }{x}
=> y .x^2=\int \ x^2 \frac {\sin x}{x} \ dx +C=>y .x^2=\int \ x \sin x \ dx
=> y .x^2=-x\cos x +\sin x +C

24
eureka123 ·

oops 17 already done....sorry all ..I really didnt see above

24
eureka123 ·

15
\frac {dx}{dy}=\frac {3y}{x-z}=>(x-z)\ dx=3y\ dy ------------(1)

&\frac {dz}{dx}=-\frac {1}{3}=>3dz=-dx-----------(2)

3z=-x+C-------(3)

Putting values from (2) and (3) in (1)
=>-3(C-3z)\ dz=3y\ dy =>-(C-3z)dz=ydy =>-Cdz+3zdz=ydy

=>-Cz+\frac {3z^2 }{2}=\frac {y^2}{2} +C_1

Simialrly others

24
eureka123 ·

13

y".y=c =>\frac {d^2y}{dx^2}y=c=>\frac {dy}{dx}=clogy+A;where \ A \ is\ a \ constant
Writing \ A=logB ;\ where \ B \ is \ another \ constant => \frac {dy}{dx}=log(y^c.B)

thinking ahead..its getting complex...

62
Lokesh Verma ·

Question 11) x\frac{dy}{dx}-y=3x^{2}y+xy^{2}

Question 12) xdy-ydx=(x^{2}+y^{2})dx

Question 13) y'' y = c

Question 14) \frac{\frac{d^2y}{dx^2}}{\left\{1+\left(\frac{dy}{dx}\right)^{2}\right\}^{\frac32}}=\frac1a\ (a>0)

Question 15) \large \begin{array}{ll}\frac{dx}{dt}=3y &\quad\\ \frac{dy}{dt}=x-z &\quad\\ \frac{dz}{dt}=-y &\quad\end{array}

Question 16) \frac{dx}{dt}-4x-\cos t=0

Question 17) x\frac{dy}{dx}+2y =\sin x

Question 18) \frac{dy}{dx}+\frac yx= x^2y^3

Question 19) y'+\frac{1}{x}y =\cos x

Question 20) (x^{2}\cos x-y)dx+xdy = 0

66
kaymant ·

Hint for 1) et x+y = u, then separate the variables

24
eureka123 ·

7
(x+y)(dx-dy)=dx+dy => \frac {dx+dy}{dx-dy}=x+y=>\frac {dy}{dx}=\frac {x+y-1}{x+y+1}

Put \ x+y=z =>1+\frac {dy}{dx}=\frac {dz}{dx}

=>\frac {dz}{dx}-1=\frac {z-1}{z+1} =>\frac {dz}{dx}=\frac {2z}{z+1}

\frac {z+1}{2z}dz=dx=>\frac {1}{2}[1+\frac {1}{z}]dz=dx=>\frac {1}{2}[z+logz]=x+C

62
Lokesh Verma ·

eureka.. ther is a 10 times simpler proof.. even aieee did the same in post 7! :)

3
msp ·

q12)d(y/x)/1+(y/x)^{2}=x^{2}dx

3
msp ·

q1)x+y=t
ln(sinx)+lnx=c

q2)f''(f(x))f'(x)/1-f'(f(x))=d(f'(x))/f'(x) \Rightarrow ln(1-f'(f(x))-lnf'(x)+c

24
eureka123 ·

oops i again spent my energy typing what had already been done[17]

1
decoder ·

hint for Q8

put x2-2=X
and y2-1=Y

1
decoder ·

Q16 hint- linear form

3
msp ·

q4)2x-y''/(x^{2}-y')^{2}=-1 \Rightarrow d(x^{2}-y')/(x^{2}-y')^{2}=-1

3
msp ·

q6)(x^{2}+4y)^{1/2}=x+c

3
msp ·

q8)x^{2}(2xdx+3ydy)+y^{2}(3xdx+2ydy)-(7xdx+8ydy)=0

Your Answer

Close [X]