A function f:R→ R satisfies
sin x.cos x(f(2x+2y) - f(2x-2y)) = cos x.sin y(f(2x+2y) + f(2x-2y))
if f ' (0) = 1/2 then:
(a) f '' (x) - f ' (x) = 0
(b) 4f '' (x) + f(x) = 0
(c) f '' (x) + f ' (x) = 0
(d) 4f '' (x) - f ' (x) = 0
-
UP 0 DOWN 0 0 0
A function f:R→ R satisfies
sin x.cos x(f(2x+2y) - f(2x-2y)) = cos x.sin y(f(2x+2y) + f(2x-2y))
if f ' (0) = 1/2 then:
(a) f '' (x) - f ' (x) = 0
(b) 4f '' (x) + f(x) = 0
(c) f '' (x) + f ' (x) = 0
(d) 4f '' (x) - f ' (x) = 0