doubts in limits and functions

1) if f(2x +y8,2x - y8)=xy

then f(x,y) +f(y,x)=???

2)the function f(x)=λmod(sinx) + λ2mod(cosx) +g(λ) has a period equalt to pie/2

then find λ

3)evaluate the limit \lim_{x\rightarrow \infty }(\frac{x}{2}cos(\frac{\pi ^{1000}}{9x})sin\left(\frac{\pi }{5x} \right) \right) )

4 Answers

1
akari ·

cosine here as no signicance
x=1/t

lim 1 π t
____________
2t 5
t→0
= 1/10

1
taran ·

f(2x +y8,2x - y8)=xy
= [(2x +y8) +(2x -y8) ] [(2x +y8) -(2x-y8)] / 64

so
f(x,y) = (x+y)(x-y) /64

f(y,x) = -(x+y)(x-y) /64

adding
f(x,y) + f(y,x) =0

1
taran ·

f(x)=λmod(sinx) + λ^2mod(cosx) +g(λ)

for f(x) to have a period pie/2

f(x+pie/2) = f(x)

i.e
λ|sin(pie/2 +x) | +λ2 |cos(pie/2 +x) +g(λ) = λ|sinx|+λ2 |cosx| +g(λ)

i.e

λ|cosx| +λ2 |sinx| = λ|sinx| +λ2 |cosx|

it implies

|cosx| +λ|sinx| = |sinx| +λ|cosx|

{ bcoz λ cant be zero as it wud yield a constant function }

so solving we get

λ =1

1
Kaustab Sarkar ·

thanx

Your Answer

Close [X]