oops sorry i have edited it now
let 'f' be a twice differntiaible function such that f''(x)= - f(x) and f'(x)= g(x) for all x ε R. If h'(x)=[ f(x)]2 +[ g(x) ]2 , h(1)= 8; h(0) =2 then h(8) = a. 16 b. 32 c. 40 d. 50
-
UP 0 DOWN 0 0 4
4 Answers
dimensions (dimentime)
·2009-05-22 22:49:30
pls check the que once, i think u missed f"(x) somewhere
dimensions (dimentime)
·2009-05-22 23:11:26
g(x)=f'(x)
differentiate it,
g'(x)=f"(x)=-f(x)
h'(x)=[ f(x)]2 +[ g(x) ]2
differentiate it,
h"(x)=0
=> h(x)=cx+k
from given data we have,
h(x)=6x+2
so, h(8)=50