f(x) f'(x) f''(x)

let 'f' be a twice differntiaible function such that f''(x)= - f(x) and f'(x)= g(x) for all x ε R. If h'(x)=[ f(x)]2 +[ g(x) ]2 , h(1)= 8; h(0) =2 then h(8) = a. 16 b. 32 c. 40 d. 50

4 Answers

1
dimensions (dimentime) ·

pls check the que once, i think u missed f"(x) somewhere

1
sreeparna jain ·

oops sorry i have edited it now

1
dimensions (dimentime) ·

g(x)=f'(x)

differentiate it,

g'(x)=f"(x)=-f(x)

h'(x)=[ f(x)]2 +[ g(x) ]2

differentiate it,

h"(x)=0

=> h(x)=cx+k

from given data we have,

h(x)=6x+2

so, h(8)=50

1
sreeparna jain ·

thank you

Your Answer

Close [X]