Fiitjee fT

Let f(X) = ∫01 |t - x| tdt.

1) Number of common tangent to curve x2 + y2 = 4 and f(x)

(A) 1 (B) 2
(c) 4 (D) infinite

5 Answers

1
Che ·

hey r u sure of teh options

f(x) comes out to be

-x2+ 13 , x≤0

x33-x2+13 , 0<x<1

x2-13 , x≥1

on ploting des i dont think der will be any common tangent with teh given circle

4
UTTARA ·

@ Hallelujah !

Ya the options r right

Post ure integration part plzz

1
Che ·

wen x≤0

t-x is +ve hence mod(t-x) =t-x so given integral is f(x)=∫01(t-x)tdt

wen 0<x<1

now since x and t lie in teh same interval and so to decide sign of (t-x) we need to break 0,1) futher into (0,x] and [x,1)

so f(x)=∫0xmod(t-x)tdt+∫x1mod(t-x)tdt

=∫0x(x-t)tdt+∫x1(t-x)tdt

wen x≥1

f(x)=∫01mod(t-x)tdt=∫01(x-t)tdt

4
UTTARA ·

Ya thanks for that :)

4
UTTARA ·

REQUEST :Plzzzz dont keep changing ur name ya

It's difficult to identify whose posting

Your Answer

Close [X]