Find the minimum odd value of a

Find the minimum odd value of a for this equation to hold true

\int _{10}^{19}\frac {\sin x}{1+x^a}<\frac {1}{9}

3 Answers

1
champ ·

Find the minimum odd value of a for this equation to hold true

11
Tush Watts ·

Ans) I = <

{as sinx < 1 and similarily [sinx / (1+xa)] < [1 / (1+xa)] }

I < <
{bcoz 10 < x < 10 ........so 10 a+1 < 1+xa < 19a+1 }

So, I < 9/(1+10a)
9 / (1+10a) < 1/9
That implies 1+10a > 81
10 a > 80
So, a=2,3,4,5,.........
Therefore, min value of 'a' = 3

11
Devil ·

U get I<91+10a
From there how do u get 91+10a<19 ?

Your Answer

Close [X]