Find the value of n

\int _{0}^{1}e^x(x-1)^ndx=16-6e;n\epsilon N,n\leq 5

2 Answers

341
Hari Shankar ·

recursion easily gives you n = 3

62
Lokesh Verma ·

\\I_n=\int _{0}^{1}e^x(x-1)^ndx \\I_{n-1}=\int _{0}^{1}e^x(x-1)^{n-1}dx \\I_n+n\times I_{n-1}=\int _{0}^{1}e^x((x-1)^n+n(x-1)^{n-1})dx \\I_n+n\times I_{n-1}=e^x(x-1)^n|_0^1 \\I_n+n\times I_{n-1}=1

I0 = e-1 (That is trivial)

\\I_1=1-(e-1) = 2-e \\I_2=1-2(2-e) = 2e-3 \\I_3=1-3(2e-3) = 10-6e

I dont know where I am going wrong!! :(

Your Answer

Close [X]