thanks :)
Limit
\lim_{n\to\infty}\frac{(n+1)^{9}+(n+2)^{9}+\cdots+(n+n)^{9}}{1^{9}+2^{9}+\cdots+n^{9}} =2^{k}-1
Find K
-
UP 0 DOWN 0 1 3
3 Answers
xYz
·2010-03-15 00:32:16
\lim_{n\to\infty}\frac{(n+1)^{9}+(n+2)^{9}+\cdots+(n+n)^{9}}{1^{9}+2^{9}+\cdots+n^{9}} =2^{k}-1 \\ \\ \lim_{n\to\infty}\frac{\frac{(n+1)^{9}+(n+2)^{9}+\cdots+(n+n)^{9}}{n^{10}}}{\frac{1^{9}+2^{9}+\cdots+n^{9}}{n^{10}}} \\ \lim_{n\to\infty}\frac{\sum_{r=1}^{\infty}{\frac{1}{n}\left( 1+\frac{r}{n}\right)}^{9}}{\sum_{r=1}^{\infty}{\frac{1}{n}\left( \frac{r}{n}\right)}^{9}}\\ \frac{\int_{0}^{1}{\left(1+x \right)^{9}\mathrm{dx}}}{\int_{0}^{1}{\left(x \right)^{9}\mathrm{dx}}} \\ (2)^{10}-1
thank u che for this ;)