is it 0?
\lim_{z \rightarrow \infty}\frac{\int_{1/2}^{z}{[cot^{-1}x]dx}}{\int_{1/2}^{z}{[1+\frac{1}{x}}]dx} where [.] is GINT
-
UP 0 DOWN 0 1 4
\lim_{z \rightarrow \infty}\frac{\int_{1/2}^{z}{[cot^{-1}x]dx}}{\int_{1/2}^{z}{[1+\frac{1}{x}}]dx} where [.] is GINT