f\left(x \right)=\cos \left(\frac{\Pi }{x} \right)
then prove that f(x) is increasing in the interval \left(\frac{1}{2n+1} ,\frac{1}{2n}\right) n\epsilon N
-
UP 0 DOWN 0 0 1
1 Answers
Aritra Chakrabarti
·2011-12-26 09:05:11
f ' (x) = \sin \left(\frac{\pi }{x} \right) .\left(\frac{\Pi }{x^{2}} \right)
for f(x) to be increasing,
2n\Pi <\left(\frac{\Pi }{x} \right)<\left(2n+1)\Pi \right
hence x \epsilon \left(\frac{1}{2n+1},\frac{1}{2n} \right)