Funcy Eqn

Pun in title intended :D

This is easy, but good for starters:

If f(x+a) = \frac{1+f(x)}{1-f(x)}, prove that f is periodic.

19 Answers

1
MATRIX ·

[100][101][102]....................[98]........[99].........[109]...........

9
Celestine preetham ·

put f(x) = tan(g(x))

tan(g(x+a)) = tan( Î /4 + g(x))

tan(g(x+4a)) =tan(Î + g(x))

ie f(x+4a) = f(x)

learn this approach it makes a mockery of the long related substitutions u need to otherwise make

1
Akand ·

oh ok then...................

1
Optimus Prime ·

because it is a straters question,we have sloved so[1]

1
Akand ·

bhaiyya.............is ther any mistake???? y did u depink us..............????

plzz tell naa wat is d mistake........

1
MATRIX ·

akand....ur great yaar..........and uur not a starter naa......[3][3][3].......

1
Akand ·

hehe thnx dude.................

1
Optimus Prime ·

ya akand u r rite

1
Akand ·

wel........
we got f(x)=-1/f(x+2a)
by doing sum more things we also get
f(x)=-1/f(x-2a)

so....
f(x-2a)=f(x+2a)
put x as x+2a
so
f(x)=f(x+4a)

so now its periodic with period 4a..

1
Akand ·

NOPE................wat he proved is not periodic......ther is a lot more to it.............

1
Akand ·

after doing sum stuff..............
we also get
f(x+a)=-1/f(x-a).......................better for starters hehe

341
Hari Shankar ·

how does your argument make it a periodic function??

1
MATRIX ·

[9][9][9].........

1
Akand ·

dont dude..........its already pinked..............and this thread is closed...........hehe

1
Optimus Prime ·

shall i remove ma post?

1
Akand ·

dude amit.............u r not a starter i guess hehehe.........dont solve da....they wer meant for 11thies...............let them also think hehe [3][3][3][3]

1
MATRIX ·

hmmm...no starters at present akand.....[1][1][1]...........[65][63]

1
Optimus Prime ·

Put x=(x+a)

then f(x+2a)= 1+f(x+a)/1-f(x+a)

1+f(x+a)=2
1-f(x+a)=-2f(x)

therefore f(x+2a)=2/-2f(x)

1/-f(x)=f(x+2a)

hecne f is a priodic function

1
Akand ·

ok d period is 4a...................atleast sum1 prove or ill post my solution.

Your Answer

Close [X]