good integrals

Q1 \int_{0}^{[x]/3}{\frac{8^x}{2^{[3x]}}}dx where [.] is gint

Q2 k ε N and I_k=\int_{-2k\pi}^{2k\pi}{\left|\sin x \right|}[\sin x]dx
find \sum_{k=1}^{100}I_k

Q3 I=\int_{sin^{-1}\alpha}^{cos^{-1}\alpha}{\frac {sinx}{sinx+cosx}}dx;\left| \alpha \right|\leq 1 ,find range of I

5 Answers

1
Che ·

r des ur doubts [1] or jus posted for oders for practice

24
eureka123 ·

for others[1]....

11
Tush Watts ·

Ans 2)

=

=

=

=

= -2k (- cosx) ................................;limits frm 0 to pie [bcoz sinx > 0 for x belonging to (0 , pie) ,
and - sinx < 0 for x belonging to (0, pie) ]

= -4k

Therefore,

= -4 . 10 . 112 = -220

1
rajatjain_ix ·

is ans. to the tgird one -Î /4 to 3Î /4??

11
Tush Watts ·

Ans 3) sinxsinx + cosx dx

= cosxsinx + cosx dx
[bcoz sin-1 x + cos -1x = pie/2]

On adding, we get

2 I = 1 . dx =
=
Therefore, I =

Since,
Thereofre, Renge of I :- [-pie/4 , 3 pie/4]

Your Answer

Close [X]