help me

b=\int_{0}^{1}{\frac{e^t}{t+1}} dt
then\int_{a-1}^{a}{\frac{e^-t}{t-1-a}}dt=?

in terms of a and b

6 Answers

62
Lokesh Verma ·

substitute z=a-t

z=a-t \Rightarrow dz= -dt\\ \\ I=\int_{1}^{0}{\frac{e^{z-a}}{-z-1}}dz\\ I=-e^{-a}\int_{1}^{0}{\frac{e^z}{z+1}}dz\\ I=e^{-a}\int_{0}^{1}{\frac{e^z}{z+1}}dz\\ I = e^{-a}b

62
Lokesh Verma ·

chck for calculation mistakes..

13
Двҥїяuρ now in medical c ·

oh...thanx bhaaiya...

11
Mani Pal Singh ·

sir limits kaise interchange ki [7]
SIR PLEASE HELP?????????

62
Lokesh Verma ·

initially t went from a-1 to a

now z=a-t

so limit will go from (a-a+1) to (a-a) = 1 to 0

11
Mani Pal Singh ·

oops
it was easy
sorry for distracting u[2]

Your Answer

Close [X]