okay..thank you.....got it....
thanks a lot....
How to solve such kinds?
find inverse of y = 10x-10-x10x+ 10-x + 1
roughly speaking find x in terms of y ,
then u get f-1(y) ,
and hence to get f-1(x) , replace y be x
here y-1 = \frac{10^{2x}-1}{10^{2x}+1}
(y-1 )(10^{2x}+1)= 10^{2x}-1
(y-2)10^{2x}=-y
10^{2x}=\frac{y}{2-y}
x=\frac{1 }{2} log_{10}(\frac{y}{2-y})=f^{-1}(y)
\Rightarrow f^{-1}(x)= \frac{1 }{2} log_{10}(\frac{x}{2-x})
its a standard method , isnt it ??
but still i hav my own confusions :P,....hav a look
http://targetiit.com/iit-jee-forum/posts/functionssss-13844.html