23
qwerty
·2010-01-26 03:59:47
roughly speaking find x in terms of y ,
then u get f-1(y) ,
and hence to get f-1(x) , replace y be x
here y-1 = \frac{10^{2x}-1}{10^{2x}+1}
(y-1 )(10^{2x}+1)= 10^{2x}-1
(y-2)10^{2x}=-y
10^{2x}=\frac{y}{2-y}
x=\frac{1 }{2} log_{10}(\frac{y}{2-y})=f^{-1}(y)
\Rightarrow f^{-1}(x)= \frac{1 }{2} log_{10}(\frac{x}{2-x})
1
abcd
·2010-01-26 04:14:01
@qwerty you are bang on target dude
i too solve it in the same manner
23
qwerty
·2010-01-26 04:16:46
its a standard method , isnt it ??
but still i hav my own confusions :P,....hav a look
http://targetiit.com/iit-jee-forum/posts/functionssss-13844.html
1
cute_cat
·2010-01-26 04:59:06
okay..thank you.....got it....
thanks a lot....