1
Manmay kumar Mohanty
·2010-03-11 01:52:30
\int_{0}^{\pi /2}{(1-sin^{2}\theta )^{5/2}cos\theta }d\theta putting x=sin\theta
\int_{0}^{\pi /2}{cos ^{6}\theta } d\theta = \int_{0}^{\pi /2}({cos ^{3}\theta)^{2} } d\theta
cos 3\theta = {4cos^{3}\theta - 3cos \theta } \Rightarrow cos^{3}\theta = cos 3\theta + 3cos\theta
SORRY DIVIDED BY 4 NAHIN KIYA
ab replace it and expand.
AB SAMAJH TA HOON HO JAYEGA
1
" ____________
·2010-03-11 02:00:07
{\color{blue} \int ( cos ^2 \theta ) ^ 3 = \int \left( \frac{1+ cos2\theta }{2}}\right)^{3} manmay's method is shorter
manmay divided by 4 bhool gaye kya
1
Manmay kumar Mohanty
·2010-03-11 02:02:37
CUBE KAROGE TO THODA COMPLICATED HO SAKTA HAI. YEHI EASY RAHEGA SAYAD.
AGAR CUBE KAROGE TO COS3 2X TERM TO AAYEGA NA PHIR MERA WALA FORMULA USE KARNA PADEGA.
1
" ____________
·2010-03-11 02:02:48
or use reduction formulae for cos θ
without usin waali or gamma function
24
eureka123
·2010-03-11 02:16:31
@ SR
can u tell the final ans plz
1
sanchit
·2010-03-11 04:34:18
\int_{0}^{pi/2}{(1-cos^2\theta)^{5/2}cos\theta d\theta}=\int_{0}^{pi/2}{cos^6\theta d\theta}
can u plzz explain me the stepp..............
1
sanchit
·2010-03-11 04:36:59
srry but i didnt find pi anywhere in the latexx srry.....firstly used it..............but the main thing i didnt undersatnd it is how u wrote {(1-cos^2\theta)^{5/2}cos\theta d\theta}={cos^6\theta d\theta}
29
govind
·2010-03-11 04:38:51
@Sanchit ..put x = sinθ ..then dx/dθ = cosθ ..
manmay has done a mistake there..that shud be (1 - sin2θ)5/2