indef. integ

∫ x2 + 20 / (x sin x + 5 cosx )2

11 Answers

1
Euclid ·

hey the question is not clear

6
AKHIL ·

it is actually

∫x2 + 20 / ( xsinx + 5cosx )2

23
qwerty ·

u hav written the same thing , and still it aint clear

write it using fractions eg: xy

6
AKHIL ·

∫ (x2 + 20) dx(xsinx + 5cosx)2

ab clear hai??!!!
:P

49
Subhomoy Bakshi ·

question is: ∫x2+20(xsinx + 5cosx)2dx

1
shubhi gupta ·

ABE SOLUTION DO

62
Lokesh Verma ·

\frac{x^2+20}{(x\sin x+5\cos x)^2}=\frac{\frac{x^2+20}{x^2+25}}{\frac{(x\sin x+5\cos x)^2}{x^2+25}}=\frac{\frac{x^2+20}{x^2+25}}{sin^2(x+tan^{-1}(5/x))}

Now substitute \\t=x+tan^{-1}(5/x)\\\Rightarrow \frac{dt}{dx}=1+\frac{1}{1+25/x^2}\times(-5/x^2)=1+\frac{-5}{x^2+25}=\frac{x^2+20}{x^2+25}

Hence the given integral becomes

\int cosec^2t dt=-cot(t)+c

[1]

1
shubhi gupta ·

mind blowing yaar!!!! thanx

49
Subhomoy Bakshi ·

x2+20(xsinx+5cosx)2=x2+25(xsinx+5cosx)2 - 5(xsinx+5cosx)2

x2+25=x2(sin2x+cos2x)+25(sin2x+cos2x) + 10xsinxcosx - 10xsinxcosx = (xsinx+5cosx)2+(xcosx-5sinx)2

so frst part is x2+25(xsinx+5cosx)2=(xsinx+5cosx)2+(xcosx-5sinx)2(xsinx+5cosx)2

which can be identified as ddx[5sinx-xcosxxsinx+5cosx]

but i am stuck with the part 5(xsinx+5cosx)2

btw" great soln by nishant bhaiya! isn't it??

1
shubhi gupta ·

can u explain the 2nd and 3rd step

1
shubhi gupta ·

this can also be proceed by multiplying and dividing X^8cos(x) in numerator and denominator

Your Answer

Close [X]