indefinite inegral

5 Answers

62
Lokesh Verma ·

\int \frac{dx}{x(x^2+1)^3}
= \int \frac{xdx}{x^2(x^2+1)^3}

x^2=t
2xdx=dt

= 1/2 \int \frac{dt}{t(t+1)^3}

Now it can be done by partial fractions?

62
Lokesh Verma ·

\frac{1}{t(t+1)^3}=\frac{t+1-t}{t(t+1)^3}
\\=\frac{1}{t(t+1)^2}-\frac{1}{(t+1)^3} \\=\frac{t+1-t}{t(t+1)^2}-\frac{1}{(t+1)^3} \\=\frac{1}{t(t+1)}-\frac{1}{(t+1)^2}-\frac{1}{(t+1)^3} \\=\frac{t+1-t}{t(t+1)}-\frac{1}{(t+1)^2}-\frac{1}{(t+1)^3} \\=\frac{1}{t}-\frac{1}{(t+1)}-\frac{1}{(t+1)^2}-\frac{1}{(t+1)^3}

11
Mani Pal Singh ·

GOOD WORK DONE BY SIR

BUT I WOULD LIKE TO COMMENT

PUT x=tanθ
dx=sec2θ

then u would have to integrate

∫cotθcos4θdθ

do it by parts[1][1][1]

62
Lokesh Verma ·

mani i thnk there wud be cos 4 theta term...

but ofcourse not to say that your method is wrong :)

11
Mani Pal Singh ·

yes sir u r right i m8issed that

ur method is the best 4 this 1 [1]

Your Answer

Close [X]