integral challenge for 2011 aspirants

find :

\int_{0}^{\frac{\pi}{3}}{\sin{\left( x-\frac{\pi}{6}}\right)\sin{\left( 2x-\frac{\pi}{3}}\right)\sin{\left( 3x-\frac{\pi}{2}}\right)\sin{\left( 4x-\frac{2\pi}{3}}\right)\sin{\left( 5x-\frac{5\pi}{6}}\right)}

5 Answers

106
Asish Mahapatra ·

ANSWER : 0

1
Sonne ·

not for those who have already cracked jee :P

1
जय ·

put\, \: ( 3x -\frac{\pi }{2}) = t

3 dx = dt

at \: \: x= \pi /3 \rightarrow t=\frac{3.\pi }{3} -\frac{\pi }{2} = \frac{\pi }{2}

at x=0 t = -\frac{\pi }{2}

hence function is odd function and ans is 0

1
Sonne ·

correct !
original problem source : http://targetiit.com/iit-jee-forum/posts/challenge-1199.html

11
vaibhav sharma ·

definite integral first property:

0∫kf(x)=0∫kf(k-x)

I=0∫pie/3sin(x-(pie/6))........... →eq1

if we will apply first property

I would come out to be

I=-0∫pie/3sin(x-(pie/3))........same as above →eq2

adding eq1 and 2
we get
2I=0
I=0

Your Answer

Close [X]