integral

1. \int_{sinx}^{1}{t^{2}f(t)dt}=1-sinx,0\leq x\leq \frac{\pi }{2}, then f\left(\frac{1}{\sqrt{3}} \right)=

ans ---------> 3

2. Function f is continuous for all x,( and not everywhere 0), such that \left\{f(x) \right\}^{2} = \int_{0}^{x}{\frac{f(t)sint}{2+cost}}dt,then prove that f(x) = 12ln32+cosx

2 Answers

29
govind ·

Thats direct application of Leibniz formula

\int_{sinx}^{1}{t^{2}f(t)dt} = 1- sinx

Differentiating both sides wrt to x we will get

-sin^{2} x f(sinx)cosx= - cosx

sinx =1/√3

just substitute the value u will get the answer

29
govind ·

Use Leibniz formula for the second one also...
On differentiating both sides wrt x u will get

2 f(x)f'(x) = \frac{f(x)sinx}{2+cosx} \Rightarrow 2 f'(x) = \frac{sinx}{2+cosx}

Now integrate it using 2+cosx = t..

Your Answer

Close [X]