integration by parts will be still messy qwerty can u integrate this
∫tan-1(2tan+1/root3)?????
32 Answers
We have
I=\int_0^\pi\dfrac{x}{1+\sin x\cos x}\ \mathrm dx = I_1+I_2
where
I_1=\int_0^{\pi/2}\dfrac{x}{1+\sin x\cos x}\ \mathrm dx
and
I_2=\int_{\pi/2}^\pi\dfrac{x}{1+\sin x\cos x}\ \mathrm dx
Consider I1. Applying a property, we have
I_1=\int_0^{\pi/2}\dfrac{x}{1+\sin x\cos x}\ \mathrm dx =\int_0^{\pi/2}\dfrac{\frac{\pi}{2}-x}{1+\sin x\cos x}\ \mathrm dx
Hence,
2I_1=\dfrac{\pi}{2}\int_0^{\pi/2}\dfrac{1}{1+\sin x\cos x}\ \mathrm dx
So that
I_1=\dfrac{\pi}{4}\int_0^{\pi/2}\dfrac{1}{1+\sin x\cos x}\ \mathrm dx =\dfrac{\pi}{4}J_1
where
J_1=\int_0^{\pi/2}\dfrac{1}{1+\sin x\cos x}\ \mathrm dx =\int_0^{\pi/2}\dfrac{\sec^2x}{1+\tan x+\tan^2x}\ \mathrm dx=\int_0^\infty \dfrac{\mathrm dt}{1+t+t^2}
where the substitution tan x = t has been used.
Complete the square as
t^2+t+1=\left(t+\frac{1}{2}\right)^2+\dfrac{3}{4}
So that
J_1=\int_0^\infty \dfrac{\mathrm dt}{\left(t+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}=\dfrac{2}{\sqrt{3}}\left|\tan^{-1}\dfrac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right|_0^\infty=\dfrac{2}{\sqrt{3}}\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)
=\dfrac{4\pi}{6\sqrt{3}}
Hence, we get
\boxed{I_1=\dfrac{\pi^2}{6\sqrt{3}}}
Next, for I2, first apply substitution
x=y+\frac{\pi}{2}
which gives \mathrm dx=\mathrm dy. Also when x=\pi/2, then y=0 and when x=\pi, then y=\pi/2
Hence, we get
I_2=\int_0^{\pi/2}\dfrac{\frac{\pi}{2}+y}{1-\sin y\cos y}\ \mathrm dy
Apply a property, we get
I_2=\int_0^{\pi/2}\dfrac{\frac{\pi}{2}+\frac{\pi}{2}-y}{1-\sin y\cos y}\ \mathrm dy
Hence,
2I_2=\dfrac{3\pi}{2}\int_0^{\pi/2}\dfrac{1}{1-\sin y\cos y}\ \mathrm dy which gives
I_2=\dfrac{3\pi}{4}\int_0^{\pi/2}\dfrac{1}{1-\sin y\cos y}\ \mathrm dy
This could again be integrated by the substitution tan y = z. The result is
\boxed{I_2=\dfrac{6\pi^2}{6\sqrt{3}}}
Hence, the given integral
\boxed{I=I_1+I_2=\dfrac{7\pi^2}{6\sqrt{3}}}
From UTTARA's method,
I_{1}=\int_{0}^{\pi }{\frac{-x(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx
Using f(x) = f(a+b-x) where a,b r limits of integral
I_{1}=\int_{0}^{\pi }{\frac{-(\pi -x)(2sin(\pi -x)cos(\pi -x))}{1- sin^{2}(\pi -x)cos^{2}(\pi -x)}}dx
I_{1}=\int_{0}^{\pi }{\frac{(\pi -x)(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx
I_{1}=\int_{0}^{\pi }{\frac{\pi(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx - \int_{0}^{\pi }{\frac{x(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx
I_{1}=\int_{0}^{\pi }{\frac{\pi(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx + I_{1}
Yahin pe mein atak gaya hoon. Please koi meri galti point out kar do.
@Che : Ya I got the same ans
But plzz post ure method also
I want to learn some easier of solving this one ??
A request to all users:- please do not delete your posts if you have wrongly attempted them. You may use these post for your future reference to identify where you went wrong in your first attempt. This will prove you to be really helpful in identifying your mistakes. Plus, this discussion helps other users to understand what mistakes should not be done.
I meant no offence. Just wanted to help all my fellow tiitians.
i actually got teh soln...not actually mine's but someone else's
ans is \frac{7\pi^{2}}{6\sqrt{3}} $
uttara check if u r getting teh same ans with ur method....i din check it
2I = \int_{0}^{\Pi }{x\left[2/(1-sin^{2}xcos^{2}x \right]} dx + \Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx
I_{1} = \int_{0}^{\Pi }{x\left[(-2sinxcosx)/(1-sin^2xcos^2x) \right]} dx
3I_{1} = \Pi \int_{0}^{\Pi }{(2sinxcosx)/(1-sin^2xcos^2x)} dx
I_{2}=\Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx = % I_{2} = \int_{0}^{\Pi }{(sec^2x)/(sec^2x - tanx)} dx
I_{2} = \int_{0}^{\Pi }{(sec^2x)/(sec^2x - tanx)} dx
Put tanx = t
sec^2x dx = dt
Now solve I 2
∫1/[(t-1/2)2 +(√3/2)2
Now replace I1 & I 2 in the I eqn and solve for sec^4 x using the formulae
Again I made a mistake but here is the correction
I1 ≠0
3 I1 = pi ∫[(2sc)/(1 - s^2 c^2 ) dx
To get the first step i replaced x by pi-x & added both
Repeated the same method for I 1 also
2I = \int_{0}^{\Pi }{x\left[2/(1-sin^{2}xcos^{2}x \right]} dx + \Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx
I1 = \int_{0}^{\Pi }{x[(-2sinxcosx)/(1-sin^2xcos^2x)]} = \int_{0}^{\Pi }{x[(2sinxcosx)/(1-sin^2xcos^2x)]}
2 I_{1} = 0
I_{2}=\Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx = \Pi \int_{0}^{\Pi }{\left[1/(1-sin^{2}xcos^{2}x)] \right]} dx = {} ∫ [0 t0 pi ] sec^4x
Now replace I1 & I 2 in the I eqn and solve for sec^4 x using the formulae
ya....I know tht the ans is wrong.
......som1 pls point out the mistake..........
my integrator is giving answer as some hypergeometric function indicating indefiite integral is messy
so some clever sbstituition must finish it off
Another try...................
I=2x/(1+(sinx+cosx)2)
I=2x/(1+(cos^{2}x/2-sin^{2}x/2+2sinx/2.cosx/2)^{2}
2I=2\int_{0}^{\pi }{}
\pi /(1+(cos^{2}x/2-sin^{2}x/2+2sinx/2.cosx/2)^{2}
I=\int_{0}^{\pi }{\pi /(1+(sinx+cosx)^{2})}=\int_{0}^{\pi }{\pi /(2+sin2x)}
can u jus explain how u got ur I in post 9 i mean the denominater part
thats rong
how can u do that ?????
u can though write integral as from 0 to pi/2 + pi/2 to pi