integral SR

\int_{-\pi /2}^{\pi /2}{\frac{cosx}{1+e^{x}}}dx

for practice.please post the solution too.
ans------->1

5 Answers

29
govind ·

Using the property of Definite integrals we have a∫b f(x) = a∫b f(a + b - x)

\int_{-\pi /2}^{\pi /2}{\frac{cosx}{1+ e^{x}}} = \int_{-\pi /2}^{\pi /2}{\frac{cosx}{1+ e^{-x}}} = \int_{-\pi /2}^{\pi /2}{\frac{e^{x}cosx}{1+ e^{x}}}

2I = \int_{-\pi /2}^{\pi /2}{cosx}dx = 2

so I = 1...

1
rahul nair ·

\int_{-a}^{a}{f(x)}dx=\int_{0}^{a}[{f(x)+f(-x)]}

I=\int_{0}^{\pi /2}{cosx/(1+e^{x})+cos(-x)/)1+e^{-x)}}

I=\int_{0}^{\pi /2}{cosx}
=1.

1
rahul nair ·

oops..Srry...din see ur post........

1
" ____________ ·

similar to iitscreening --2001

1
Manmay kumar Mohanty ·

thnk s u guys.
posted it for practice and it seems u r all geniuses

Your Answer

Close [X]