Thanks aritra.
\hspace{-16}(1)\;\;\displaystyle\int_{0}^{\pi}\frac{x^2\cos^2 x-x\sin x-\cos x-1}{(1+x\sin x)^2}dx$\\\\\\ $=\int_{0}^{\pi}\frac{x^2-x^2\sin^2 x-x\sin x-\cos x -1}{(1+x\sin x)^2}dx$\\\\\\ $=\int_{0}^{\pi}\frac{(-x^2\sin^2 x-1-2x\sin x)-(1-x\sin x-x^2)}{(1+x\sin x)^2}dx$\\\\\\ $=\int_{0}^{\pi}-1.dx-\int_{0}^{\pi}\frac{d}{dx}\left(\frac{x.\cos x}{1+\sin x}\right).dx$\\\\\\ $=-\left[x\right]_{0}^{\pi}-\left[\frac{x.\cos x}{(1+x.\sin x)}\right]_{0}^{\pi}$\\\\\\ $=-\pi+\pi=0$