integrals for zzz and others

\boxed{1} \int \frac{\mathrm{dx}}{1+x^4} \\ \boxed{2}\int \frac{\sin x+\sin 2x}{\sqrt{\cos x+\cos 2x}}\mathrm{dx}\\ \boxed{3}\int \frac{1+x^{\frac{2}{3}}}{1+x}\mathrm{dx}

11 Answers

1
zzz ·

1.

x2 = tan θ

integral reduces too

12∫√cotθ dθ

which is standard

1
Sonne ·

\frac{1}{2}\int \frac{(x^2+1)+(1-x^2)}{1+x^4}
now u can go for algebraic twins ;)

1
zzz ·

excellent cd

1
Ricky ·

I 1 = ∫ x 2 + 1x 4 + 1 dx

Let ' s put ------ x - 1x = z ;

So , ( 1 + 1x 2 ) dx = dz

I 1 = ∫ dxz 2 + 2 = 12 tan - 1 z2 + c = 12 tan - 1 { x 2 - 12 x } + c

I 2 = ∫ x 2 - 1x 4 + 1 dx

Similarly proceeding ( Taking x + 1x = z ) and integrating , we get ,

I 2 = 12 √2 log { x 2 - √2 x + 1x 2 + √2 x + 1 } + c '

Clearly , I = ∫ dx1 + x 4 = 12 ( I 1 - I 2 )

Hence , the answer .

1
Sonne ·

right !!!!!!!!!!!

tricky

1
zzz ·

3. put( x)23 =t

1
zzz ·

2. cosx = t

1
Sonne ·

q2 right substituition

1
zzz ·

3.

on substitutin

x^( 2/3)= t

we get

∫ t+ t√t1+ t√t dt

whch can be done

1
Ricky ·

Q 2 . Easier method - ( If I am correct in calculations ) -

I = ∫ ( sin x + sin 2 x ) dxcos x + cos 2x

= ∫ sin x ( 2 cos x + 1 ) dx 2 cos 2 x + cos x - 1

= √2 ∫ sin x ( 2 cos x + 1 ) dx 4 cos 2 x + 2 cos x - 2

= - 22 ∫ ( 2 cos x + 1 / 2 + 1 / 2 ) ( - 2 sin x dx ) ( 2 cos x + 1 /2 ) 2 - 9 / 4

Now substitute , 2 cos x + 1 / 2 = z = > - 2 sin x dx = dz

So , I = - 12 ∫ ( z + 1 / 2 ) dz z 2 - ( 3 / 2 ) 2

I shall take 94 = a 2 for my convenience .

I = - 12 ∫ z dz z 2 - a 2 - 12 √2 ∫ dz z 2 - a 2

= - 12 z 2 - a 2 - 12 √2 log { z + √z 2 - a 2 } + c

= - √ 2 cos 2 x + cos x - 1 - 12 √2 log { 2 cos x + 1 / 2 + √ 4 cos 2 x + 2 cos x - 2 } + c

1
Sonne ·

zzz one suggestion please finish of a problem before giving suggestions lik "which can be done " or " which is standard "
its good for u only as it will give a feel of finishing a problem [1]
ricky u r right

Your Answer

Close [X]