Try intefration by parts:
take 1 as first function and cos(lnx) as second
I=cos(ln(x))*x-∫-sin(ln(x))*x dx
I1=∫sin(ln(x))*x dx
Apply parts to it also
Then I=cos(ln(x))*x+I1
I=cos(ln(x))*x+x*sin(ln(x))-∫cos(ln(x))dx
I=cos(ln(x))*x+x*sin(ln(x))-I
2I=(cos(ln(x))+sin(ln(x)))*x
I=x*(cos(lnx)+sin(lnx))/2