just put x=tanθ
then see here
http://www.targetiit.com/iit-jee-forum/posts/integration-a-das-d-134-14576.html
if n>1 evaluate : \int_{0}^{\infty }{\frac{dx}{(x+\sqrt{1+x^{2}})^{n}}}
ans -----> nn2 - 1
-
UP 0 DOWN 0 1 3
3 Answers
Let
I_n=\int_0^\infty \dfrac{\mathrm dx}{(x+\sqrt{1+x^2})^n}
Integration by parts yield
I_n=\left|\dfrac{x}{(x+\sqrt{1+x^2})^n}\right|_0^\infty+n\int_0^\infty\dfrac{ x \ \mathrm dx}{(x+\sqrt{1+x^2})^n\sqrt{1+x^2}}
The first term yields 0 and so we get
I_n=n\int_0^\infty\dfrac{ x +\sqrt{1+x^2}-\sqrt{1+x^2} }{(x+\sqrt{1+x^2})^n\sqrt{1+x^2}}\ \mathrm dx
which further gives
I_n=n\int_0^\infty\dfrac{ x +\sqrt{1+x^2} }{(x+\sqrt{1+x^2})^n\sqrt{1+x^2}}\ \mathrm dx -nI_n
from where we get
(n+1)I_n=n\int_0^\infty\dfrac{ x +\sqrt{1+x^2} }{(x+\sqrt{1+x^2})^n\sqrt{1+x^2}}\ \mathrm dx
The integral could be done easily by the substitution
z = x+√1+x2 which gives
dz = x+√1+x2√1+x2 dx
So we get
(n+1)I_n=n\int_1^\infty \dfrac{ \mathrm dz}{z^n}=\dfrac{n}{n-1}
And so ultimately
\boxed{I_n=\dfrac{n}{n^2-1}}